本文对于正态分布中的3σ指的是什么和什么是正态分布?正态分布中的σ指的是什么?作出了比较丰富的阐述,希望能帮助到大家。现在就让我们一起来了解一下吧。
什么是正态分布
正态概率分布是连续型随机变量概率分布中最重要的形式,它在实践中有着广泛的应用。在生活中有许多现象的分布都服从正态分布,如人的身高、体重、智商分数;某种产品的尺寸和质量;降雨量;学习成绩,特别是,在统计推断时,当样本的数量足够大时,许多统计数据都服从正态分布。下面以人的身高为例,通俗解释一下什么是正态分布?
随机抽取200位同等年龄上下的男性,测量好他们的身高之后计算出平均身高,通过将平均身高和他们各自的身高对比,我们可以轻松发现这一现象:大多数男性的身高都集中在平均身高上下浮动,有极少数男性身高很矮,也有极少数男性身高很高。这200为男性身高的概率密度函数可能如下图所示:
实际上,这种形状十分常见,应用很广泛,它叫做正态分布。
正态分布的概率密度函数
正态分布之所以被称为正态,是因为它的形态看起来合乎理性。在现实生活中,遇到测量值之类的大量连续数据时,正常情况下都会期望看到这种形态。正态分布的概率密度函数的计算公式如下:
其中μ=均值,σ=标准差,π=3.14159,e=2.71828。如果随机变量X符合上述概率密度函数的分布,则称X是服从参数为μ,σ2的正态分布,记为X~N(μ,σ2)。
正态分布的概率密度函数具有下列性质;
以x=μ为对称轴的对称分布;
σ2指分散性,σ2值越大,正态分布的曲线越扁平、越宽;
以x轴为渐近线;
若随机变量X1,X2…,Xn皆服从正态分布,且相互独立,则对任意几个常数a1,a2,…,an(不全为0),Z=a1X1+a2x2+……+anXn也服从正态分布。
正态分布求概率
在《每天一点统计学——概率密度函数》中,我们已经知道如何使用概率密度函数求概率的方法。但是在正态分布中求概率是非常困难的,提供包括所有不同的μ和σ的正态分布表也是不可能的。所以统计学家通过一种简单的方法来解决这一问题。对于一个随机变量X~N(μ,σ2),如果令
Z=(x-μ)/σ
(标准分),则随机变量Z服从μ=0,σ2=1的正态分布,记为Z~N(0,1),称为标准正态分布。
标准正态分布的概率密度函数为:
通过上式可以看出标准正态分布不再依赖于参数μ和σ,它是固定的,是唯一的。因此,标准正态分布中随机变量与其概率的对应关系被计算出来,并列为
标准正态概率分布表
,以便查询。于是,对于不同的μ和σ,只要将变量值转化为Z值,然后查表即可得到其概率值。
标准正态概率分布表
例子:已知研究生完成一篇硕士论文的时间服从正态分布,平均花费2500h,标准差为400h,现随机找到一个已完成论文的学生,求:
(1)他完成论文的时间超过2700h的概率;
(2)他完成论文的时间低于2000h的概率;
(3)他完成论文的时间在2400h~2600h之间的概率。
解:用X表示完成论文的时间,则X~N(2500,400*400)。这是非标准的正态分布,如果直接计算概率是非常麻烦的,我们首先将其转化为标准正态分布,然后通过标准正态分布表查出变量的概率值。
(1)求P(X>2700)
Z=(x-μ)/σ=(2700-2500)/400=0.5
可以查询标准正态分布概率表,表中第一列是z值,第一行是z值的补充值,现z=0.5求的是从0.5到+∞的区间上的概率,即1-0.6915 = 0.3085。
(2)求P(X<2000)
Z=(x-μ)/σ=(2000-2500)/400=-1.25
根据正态分布的对称性,1.25的概率值与-1.25的概率值完全对称,所以只查1.25的概率值即可。Z=1.25时,P(1.25)=0.8944,则P(-1.25)= 1-P(1.25)=0.1056
(3)求P(2400<X<2600)
Z1=(x-μ)/σ=(2600-2500)/400=0.25
Z2=(x-μ)/σ=(2400-2500)/400=-0.25
查询标准正态分布概率表,可得出P(0.25) = 0.5987,P(-0.25) = 0.4013。
P(2400<x<2600)=P(x<2600) – P(x<2400) = 0.5987 – 0.4013 = 0.1974
正态分布中的3σ指的是什么的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于什么是正态分布?正态分布中的σ指的是什么?、正态分布中的3σ指的是什么的信息别忘了在本站进行查找哦。
本站内容来源于网络,如不慎侵犯了您的权益,请联系我们将迅速删除。